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ABSTRACT 

n      n x,  -x 1 "x2 S       ' ll       iZ An identity            =        /       , x,      x_ 
1     2 i.+i_=n-l 

is here generalized to an arbitrary number of variables 

x x    .    The proof of the generalized identity 

1.+1- + ...+1    =n-m+l x   1     2'v   1     3'        x   1     m 
12 m 

n n x., x 
2 _     + +   ,       m      ;  . 

(x, -x, ){x, -x,;. . . (x, -x    T W     -X, )(x     -X-,). . . (Xm -X       7T 2     l/v  2     3 '   2    m m     1      m     2 m    m-1 

is obtained by computing transition probabilities in a Markov Chain. 

n 
1.    1- 1 x. 

x   1     2 m    _ 1 , 
1   x2   * ' ' xm (x   -x?;(x. -xj. . . (x. -x    ) 



Assume that   0 < x. < 1  ,    i = l,  2,   .. . m, x. / x.   for   i / j , 
i i       J 

and let   y.  = i   - x..    Consider a Markov Chain with the matrix of 
l l 

transition probabilities: 

Xj     yt 0 0 0 

0       x2 y2 0 0 

0       0   ■ x3 y3 0 

0       0       0       0       0 

If   n £. r   then a transition of the system from the state   k   to 

a state   k +  r   in   n   steps can occur in any of the set of mutually 

exclusive way_ ,  each corresponding to a distinct sequence of integers 

*i'   *2'   * * ' '   fcr  '    satisfying the inequalities    1 $ t. <  t, <   . . .  < t   ^ n. 

In each of these cases the system passes from the state   k + h   to the 

state   k + h + 1   at the step number   L    .  .    The probability of such an 

'l'1     tjj-ti-l      'n"*r 
event is     yfcyk+1 

yk+r-lxk        *k+l      xk+r     *   Here the sum 

of the exponents of   x. +.'s   is   t.   - 1 + t    -t.-1 + ...+n-t    = n - r. 

Therefore the probability   p.   '   of transition in   n   steps from the state 

k   to the state   k + r   is given by 

(n) S~~ ll    il ir+l 

(i) Pkr   =ykyk+1 •••yk+r.i    <^-~ xkxk+f- *k+* 
1i+---+1r+rP-r 

On the other hand,    p\ can be obtained by the method described in 



r"l"|.      Let   D(s)   be the determinant of the system 

lj = s(Xj i} + Yj £j+1 ),    j = 1,  2, m - 1   , 

(2) 
£      = s x     £ *m m *m 

and let   (t\   ,   ...,£*      )   be a non-trivial solution of (2) correspond- 

ing to   the root   s     of   D(s).    Similarly,  let   (ry    ,   ,.., n*     )   be a 

non-trivial solution of 

(3) 

\ =8(yi-i^i-i + xi v • 

corresponding to the same root   s     of   D{s). 

Let 

1 w » 

and 

(5) it?   - ct i
{t) r^ *Ji          t »J      'i * 

Then 
(1) (2) (m) 

<*>> 
(n)           ^k k+r    , 

Pi<        -                     + 
81 

^k k+r 
n 

S2 

^k k+r 
* +        n 

sm 

It follows from (2) that non-trivial solutions   (£*   ,   .. . , |      )   can 
1 m 

be obtained for the following values of   s: s,   = -—     ,    e7 =    -— 
m m -1 

. . . ,   8      =   —   .     By substituting   s    =     ■■ -■      in (2)   the following 
m       xl C      xm-t+l 

expressions are obtained: 

6 



a) ,<t)   (t) 
{f} &m<     *m-l 

(t) 
'm-t+2 = 0   , 

(8) e(t)      = i 6m-t+l       l    ' 

The substitution of (8) in the first  equation of (2) yields 

(9) *m-t 
'm-t 

m-t+1      m-t 

Suppose, by induction,  that for   j £ m - t 

(10) ;(t> 
JS-lzL 

p=0 

\J+P- 
m-t+i  "   j+p 

The substitution of (10) in (2) yields 

:(t) 
m-t-j+1 

p=0 

fJ+P 

m-t+1 j+p 

Thus,   in view of (9),   (10) holds for every   j $ m  - t. 

Similarly,  it follows from (3) that 

,(t) r\: *   =0 ,       for   i < m - t + 1    ; 

(ID T,
W =1- Vi-t+1       l   ' 

*!; 
(t) 

i-m+t-2 
'i-p-1 

p=0 
X ...     -   X. m-t+1        j-p 

,    for   i ,> m - t +   1 

Therefore it follows from (4),   (7),   (8),   and (11) that 

(12) c.-l,    t-l,2,...,m. 



Now (5),   (7),   (8),   (10),  and (12) yield 

&W =0,    if   i < m - t + 1     or    j > m - t + 1    ; 

At) = t   . 
bm-t+l  m-t+1 

(12) 

m -t-i -2 

'm-t+1  i 

,(t) 
bj m-t+1 

p=0 

m-t-, 

n+p-i 
Xm-t+l   " xi+p 

,    if   i > m  - t + 1    ; 

p=0 

'j+P 

m-t+1        j+p 
,    if   j < m - t + 1 

m -t-j 
•(t)    _ ^ ' 
'ij 

i-m+t-2 

P=0 

j+P 
x . -x. 
m-t+1     j+p 

'i-q-i 

q=0 
Xm-t+l"Xj-q     ' 

if   i > m  - t + 1   and   j < m  - t + 1   . 

Therefore by (6) 

(13) [ (n)   m ■  
l,m " yl y2 ' • 'ym-i      Tx—^ THx—^x ,). . . (x—::x7T v m    m-l'v m    m-2'       * m     1 

n 
Sn-1 

Tx      Tot    JTx      T^x      -,)... (x       . -x.) * m-1     mM m-1     m-2'       x m-1     1' 

m 

(x, -x    )(x, -x        J  ...  (x. -x,J *   1     m      1     m-1 1     2 

Let   P,   (x, ,  x_,   . . .x    ) 
k      1       2 m 

.  ^ 
i * +i-> + ■■• +i     =k 12 m 

Xl    x2 x 
m 

m 

Then by (1) and (13) 
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(14) Pn-m+l  <X1'  X2' V(x1 ,  x2, 

where   V   is a Vandermonde's determinant.    Now the numerator   N 

of the right  hand side member of (14) is a polynomial in   x. ,   . . . ,  x 

and it vanishes whenever   x.   = x.   for   i / j.    Since   V = (x,   - x,)  . . , 

(x.   - x    ) (x-,  - x_)  . . .   (x       .   - x    ),    it follows that   N   is divisible 1        m' v  2        3' v m-1        m 

by   V.    Hence (14) is an equality of two polynomials which is valid 

for every   x.    such that   0 < x.   <l.   Hence (14) is an identity when- 

ever   N/V   is defined,  i.e.    whenever   x. / x.   for   i f j.    This 

identity can be written in the form 

m 

n n 

(15) 
1 2 

n-m+1       {x{ -x2)lxt -x3). . . (x1 -xm)      (x^x^x^x  >. . . (x^x^ 

.  + 

n c m 
Tx     -x. )(x     -x0). . . (x     :öc       IT m     1M  m m     m-1 

For   m = 2    (15) reduces to 

n-1   .     n-2       ,     n-3   2  , 
xl       + xl     x2 + xi     x2  + ..+ x n-1 

n n 

xrx2 x2"xl 

Aow c. 
C. MA.SAITIS 
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